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Abstract  

A new scnsitivit>, analysis technique is developed by utilizing Tihonov's singular 
perturbation thcor). The described sensitivity analysis method deals \~ith algebraic 
equations instead of solving the system o[" differential equations, which is the case 
in conventional sensitivity analysis. In the field of chemical kinetics, the proposed 
technique can supply infornmtion on the iinportancc ofeleincntary steps in complex 
reaction mechanisms. As examples, high-temperature propane pyrolysis and thc 
cl~emistry of the "unpollutcd" troposphere are studied. 

1. Introduct ion  

Mathematical models of reaction mechanisms are often used in the investigation 
of complex chemical systems. Sensitivity analysis of the models reveals the relation- 
ship between the model solutions and the input kinetic parameters, and also supplies 
in formation on the importance of the elementary reactions [1 3]. The basic quantity 
in conventional sensitivity analysis is the concentration sensitivity coefficient defined 
as the partial derivative of a species concentration c i with respect to a kinetic para- 
meter k~ " sq = c)ci/~k/. I1 is a measure of the response of species concentration c i 
Lit time t 2 to the perturbation in the value of parameter k~ at time t~ (where t 2 > t 1). 
Thus, the kinetic information derived by conventional sensitivity analysis belongs to 
a time interval (z 1, t 2) of the reaction course during which important reaction 
characteristics may change. 
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The kinetics and mechanism of a complex chemical reaction at a given stag e 
of the process is determined unequivocally by the actual species concentrations and 
the rate coefficients. Consequently, kinetic and mechanistic problems should be 
studied by analysis techniques using quantities which only depend on the concen- 
trations and the kinetic parameters. The recently suggested reaction rate analysis 
method [4], which uses sensitivity coefficients defined as the derivatives of the 
rates of species concentration changes with respect to the kinetic parameters, 
i.e. ~ij = O.[i/3lCj' conforuls to this type of treatment. These rate sensitivity coefficients 
rewritten in a log-normalized form, ~ i j ( k , c )  = O In ]i/O In kj = t~.jRj/.[ i, represent 
the ratio of rate of formation or consumption of species i in reaction j and the net 
rate of concentration change of species i. They depend only on the species concen- 
trations and kinetic parameters, and are particularly suitable for the investigation of 
mechanistic questions. 

The method of quasi-stationary sensitivities described in this paper applies 
the concept of concentration sensitivities. An approximation allows us to replace the 
sensitivity differential equation by algebraic equations, and this considerably simplifies 
the analysis. In accordance with rate analysis, the sensitivities calculated by this 
method also depend only on actual concentration values. 

A disadvantage of conventional sensitivity analysis is the significant computer 
time which is required in solving simultaneously both the kinetic and the sensitivity 
differential equation systems. However, in contrast to concentration sensitivity 
analysis, the use of the method presented in this work is inexpensive. 

2. Sensitivity equations 

Tile kinetic differential equations for a chemical system are given by the 
equations 

d£ 
dt  f ( c , k ) ,  c(O) = c o, (1) 

where ¢(¢) is the n-vector of species concentrations and k is the m-vector of rate 
coefficients. Differential equations for local concentration sensiti~,ity coefficients 
can be obtained by differentiation of the kinetic equations with respect to the para- 
meters: 

d ~c Oc Oc 
,.j - J + Fj ,  (0 )  = 0,  (2 )  

d t 

where J = ~ f / ~ c  and Fj : ~ f / ~ k j ,  with j : 1 . . . . .  m.  
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3. Sensitivity in equilibrium and in stationary s3)stems 

In equilibrium and in stationary systems, the sensitivity coefficients may be 
regarded as dynamic quantities which are goverened by eq. (2) [1]. The time profiles 
of the sensitivity coefficients give the dynamic response of the system to a differential 
change in ki around the steady state (see tile analytical expression in ref. [5]), 
and the stationary sensitivity coefficients are tire limits in time of the dynamic 
quantities [6]. (Note that this latter statement is valid only if the steady state is 
stable.) Since at stationary conditions species concentrations as well as the matrices 
J and F are time invariant, the stationary sensitivity coefficients may be obtained 
from algebraic equations, 

= = _ d-1 l;}, / = 1, m, (3) 

whicll follow from eq. (2) i f  the left-hand sides are taken to be zero. 
The stationary sensitivity matrix which represents the change of stationary 

species concentrations to a differential change in parameters, 

~C s 
- (4) 

J Ok/ ' 

carries valuable information oil tile reaction mechanism of the chemical process in 
equilibrium or in a stationary state [7]. The matrix S s together with the principal 
component analysis (a powerful technique recently suggested [2,3] for handling 
sensitivity data) may be useful in, for instance, the study of chemical reactors 
operating in a stationary mode. 

4. Quasi-stationary sensitivity analysis 

In dynamic systems where species concentrations change with reaction time, 
J and F are time dependent. Thus, sensitivity equation (2) is a system of linear 
dift\'rential equations with variable coefficients. Therefore, calculation of the sensitivity 
coefficients is not as straightforward as in the case of equilibrium or stationary systems, 
We suggest, however, that by taking advantage of Tihonov's theorem [8] an approxi- 
mation method may be developed for the calculation of  sensitivities in dynamic 
systems which retains the simplicity of solving algebraic equations. 

Tihonov's theorem can be presented in the interpretation of Klonowski [9] 
as follows. 

Consider a system of p first-order ordinary differential equations. Let us assume 
that s of the p equations have a small paranreter tt multiplying the time derivatives: 
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d x i / d t  = ./'}(x I . . . . .  x t , , z  I . . . . .  zs), i = 1 . . . . .  n (5a) 

l a d z U d t = g < ~ ( x  1 . . . . .  x , , , z  1 . . . . .  z.v), ~= 1 . . . . .  .~' (5b) 

x (0 )  = Xo; z(0)  = z o, 

where n +s  = p .  According to the theorem, when p - , 0  the solution of  the whole 
system (represented by eq. (5) ) tends  lo the solu|ion of  the degenerate system (eq. (5) 
with /., = 0 ), if" the following conditions are luli]lled: 

(a) The solution ~1 = T l t x l  . . . . . .  v,~) . . . . .  #s = 7s(Xl . . . . . .  'c,,) is an 
isolated root of  the algebraic system 

gv(xl  . . . . . .  v , , , : l  . . . . .  : s )  = 0, ~ = 1 . . . . .  s: (6) 

(b) The solution f~ . . . . .  z s, is a stable isolated singular point of system t5b) 
for all values oJ (x 1 . . . . . .  v. ): 

(c) Tile initial value z o is in the dolnain of  influence of  the stable singular 
point of" system (Sb): 

(d) The solutions of systems (5) and (Sb) are unique and the rigllt-hand 
sides (.f} and &:) are conti~luous functions. 

In applying Tihonov's theorem to our problem in dynamic sensitivity analysis, 
eq. (5a) stands for the s)stem of  kinetic differential equations and eq. (5b) corre- 
sponds to the sensitivity equations with the left-hand side multiplied by parameter/~: 

d Oc Oc Oc 
- ,/ + b},  ( 0 )  = 0 ,  ( 7 )  Og ag 

In our case, all four preconditions of application of  ] ihonov 's  theorem are 

fulfilled. In chemical kinetics, f and g are polynomials,  which are continuously dif- 
ferentiable functions. Ihe re fo re ,  tile solutions of  systems (5) and (5a) are unique and 
consequently the solution of (5b) is also unique. Since (5b) is linear in our case, it 
has one singular point if J is regular (condition (a)is fulfilled). If it is stable (condition 
(b) is fulfilled), the whole variable space is in the domain oi influerlce of  the singular 
point. Fur thermore,  condition (b) and the regularity of  matrix ,l are fulfilled if" tile 

real parts of  the eigenvalues of  tile Jacobian of  the sensitivity equation ( 2 ) a r e  all 

negative at the concentrations obtained as the soluti(m of  eq. (1). "Ihe eigenvalues 

of" the Jacobian are negative if" tile Jacobian is a diagonal matrix with negative elements. 
The eigenvalues are presumably also negative when tl~e Jacobial  is almost a diagomfl 
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matrix. The Jacobian of eq. (2) is ahnost block diagonal with matrix J (i.e. the 
Jacobian of eq. (1)) in the blocks [10]. J is a sparse matrix, and the negative diagonal 
elements represent consuming reactions of species. 

The discussion presented above indicates that conditions (a) (d) appear 
generally to be fulfilled: thus, one expects that - as an approximation ...... the left- 
hand side of the sensitivity equations (7) may be replaced by zero and the sensitivity 
coefficients can be derived by solving algebraic equations: 

1 
1" = 1 . . . . .  m. (8) 

The sensitivity coefficients defined in eq. (8) and the corresponding matrix S q 
will be referred to hereafter as quasi-stationary sensitivities. These depend on the 
actual species concentrations and are independent of the pre-history of the system, 
as it is required theoretically. 

Use of eq. (8) presumes that the matrix J is invertible. If all species have at 
least one consuming reaction and if none of the species concentrations are zero, then 
all diagonal elements of matrix J are non-zero. Since J is a sparse matrix, it is usually 
invertible in this case. 

If J is not invertible, a possibility is to use the generalized inverse of J. Further- 
more, there is a computationatly simple way of obtaining an approximate solution for 
eq. (8). Let us modify the original matrix J:  

, [ '  = J - I X  , t191) 

where I is the unit matrix and 0 < k <~ 1. The desired inatrix can then be computed by 

S q = - ( J ' ) - x F .  ( l O )  

The method of quasi-stationary sensitivity analysis is an approximation 
method just like the quasi-steady-state assumption (QSSA) which is rather often 
applied in chemical kinetics. QSSA. also based on Tihonov's theorem [9], simplifies 
tile treatment used in the solution of a number of kinetic problems by allowing to 
replace the kinetic differential equations for some short-lived species by algebraic 
equations. Both the quasi-steady-state assumption and the quasi-stationary sensitivity 
analysis break down when concentrations of some reactive species change very rapidly 
as, for instance, in the very early period of a complex chemical reaction. Near the 
lower time limit of the interval (t~, t 2) in concentration sensitivity calculations, the 
sensitivity coefficients change remarkably (from zero at t = 0), and consequently the 
quasi-stationary sensitivity analysis can not be applied. 

Although the quasi-stationary sensitivity approach does not provide accurate 
values of concentration sensitivity coefficients, experiences in the use of quasi- 
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stationary analysis for reactions of different types indicate that the method may 
supply useful mechanistic information for a considerable number of reactions in 
various reaction conditions. Two examples are given in the next section. 

5. Analysis of complex reaction mechanisms 

In order to demonstrate tile value of quasi-stationary sensitivity analysis, we 
shall briefly discuss the results obtained in the study of the S q matrices computed for 
high temperature propane pyrolysis and for tile chemistry of the "unpolluted" tropo- 
sphere. A recently suggested teclmique [2,3] called principal component analysis is 
used for handling sensitivity data and for extracting kinetic information from the 
matrix. Conclusions drawn from quasi-stationary sensitivity analysis will be compared 
with the results of  rate sensitivity analysis, which does not depend on assumptions 
and approximations like the former method. 

5.1. HIGH TEMPERATURE PROPANE PYROLYSIS 

The mechanism selected for analysis is based on the scheme published by 
Hautman et al. [11] which is supplemented by two further steps proposed by 
Bradley [12]. The whole 66-step mechanism, together with the kinetic parameters, is 
given in ref. [4]. 

Analysis of the mechanism has been carried out at temperature 1250 K, 
3.85 x 10 -s tool dm -3 propane concentration, and six different reaction times in the 
range of 0.0005 385f propane conversion. On the basis of the results of quasi- 
stationary sensitivity analysis, the original 66-step mechanism could be reduced to 
a 23-step scheme without significant loss in accuracy of species concentrations. 

Quasi-stationary sensitivity results were compared with rate analysis results 
under identical conditions. Both methods selected the same steps as important 
processes. 

Product concentrations calculated with the reduced scheme at: Y;; propane 
conversion agreed within one percent with the results derived from the full nlechanism 
(see table VII in ref. [4] ). 

5.2. PHOTOCHEMISTRY OF THE "UNPOLLUTED" TROPOSPtIERE 

A mechanism was formulated by B&ces et al. [13] to describe the photo- 
chemistry of processes occurring in the slightly polluted troposphere. This mechanism, 
consisting of sixty elementary reactions of twenty-two reactive species, was used to 
calculate tile diurnal variation of pollutants under typical meteorological conditions 
for a summer day at northern mid-lattitudes of 45 °. Sensitivity analysis was carried 
out with concentrations and rate parameters corresponding to each hour of the diurnal 
cycle. 
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l::ig. 1. Diurnal change of reaction importances in the model of 
unpolluted troposphere. Numbering of reactions refers to the 
mechanism in ref. [ 131. 

The quasi-stationary sensitivity matrix was determined for each hour using 
the unmodified Jacobian. Principal component  analysis was carried out and a reaction 
was considered important if it belonged to an eigenvector element greater than 0.1 and 
the eigenvector corresponded to an eigenvalue greater than 0 .0001.  The major results, 
which are very similar to the rate analysis outcomes,  are presented in fig. 1. The time 
intervals indicated by shaded areas are those in which the particular reaction proved 
to be important. It can be seen that altogether there are forty-nine reaction steps 
which are important during the whole day or at least in one part of  the day. The 
calculated diurnal concentration versus time profiles obtained from the 49-step 
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Fable 1 

('omparison of the soluti~ms at noon derived from the complete and the reduced 
inodcls of unpolluted troposl)here 

Species 
Concentralions at l/oon Deviations 

(tool cm - 3 ) (,~,)'7 
66-step model 49-step model 

NO 7.455 E + 08 ...... 2.54 
NO, 5.661 E +08 1,05 
O~ 1.432 E + 11 0.40 
HCllO 5.037 l'i +09 0.48 
Ct[~ 4.200 E + 13 0.00 
CO 4.000 E + 12 ........ 0.03 
SO~ 8.054 E +09 0.11 
S()~- 5.727 E +08 1.44 
CI130:1t 2.895 E +09 7.95 
lt:O~ 8.817 E+09  7.59 
HNO 3 8.617 E+08  2.10 
ltONO 4.231 12 + 06 0.66 
IfO:NO: 2.697 E +06 1.43 
CH~O~ 6.962 I:~ +07 3.15 
llO; 2.573 E +08 2.52 
N : O  1,732 l'i +02 1.88 
N()~ 1.356 lil +04 3.01 
OH 1.550 l'i +06 3.27 
CH:~O 6.249 E + 01 0.89 
O 4.754 E +02 0.25 
Ctt~ 1.213 E 01 3.33 
O* 3.534 E - 03 0.41 

a Deviations after 24 hours simulation time. 

reduced mechanisn l  are very close to the so lu t ion  of  the 66-s tep  full mechan i sm.  

This is apparent  from table 1, where concen t r a t i ons  for n o o n  calculated f rom the 

two models  are compared .  
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